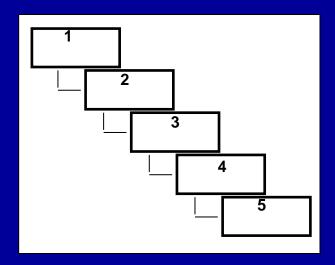
Project Stages, Tips & Dangers

Steve Snelling & Shamshad Alam

Retired, Boeing Industrial Engineers


Presentation Outline

 Project Stages with descriptions & Projects Coaching Reviews

 Project Tips including things to do that will help with Project Management

 Project Dangers and ways to plan for and minimize most project pitfalls

Five Project Stages

Main Areas Many IEs Work In

MANAGE PROJECTS

- Project Management
- Project Scheduling
- Risk Management

PROCESS IMPROVEMENT

- Lean Manufacturing
- Engineering Economic Analysis
- Process Modeling
- Root Cause Analysis
- Statistical Methods
- Six Sigma
- Time Studies
- Work Sampling

SUPPLY CHAIN ANALYSIS

- Supply Chain Alignment
- Material Logistic
- Inventory Control
- Supplier Support
- Make/Buy Mfg Process

OPERATIONS IMPROVEMENT

- Ergonomics & Human Factors
- Operating Plans
- Recovery Planning
- Capacity Planning

INTEGRATED SYSTEMS

- Value Stream Analysis
- Facilities Layout
- Production System Design
- Manufacturing Process Design
- Systems Thinking

DIRECT SUPPORT TO PRODUCTION

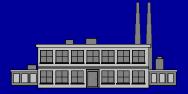
- Production Scheduling
- Theory of Constraints
- Budgets & Forecasts
- Crew Empowerment
- Defect Analysis
- Benchmarking Analysis

Project Management

- Project Planning
- Project Scheduling
- Projects Coaching
- Risk Assessment

Material

- Supplier On-Site Visits
- Supply Chain Management
- Parts Storage & Movement


Safety

- Safety Investigations
- Ergonomic Evaluations

Industrial Engineering Functional Work Areas

Factory Operations

- Production Scheduling
- Lean Manufacturing
- Systems Integration

Facilities

- Layout Design
- Process Flow Analysis

Quality

- Chronic Rework
- Supplier Quality

Product Engineering

- Integrated Product Teams
- Product Development
- Product Costing

Production Control

- -Product Mix Analysis
- Forecasting

Costing

- Comparison of Alternatives
- Cost & Savings Estimating

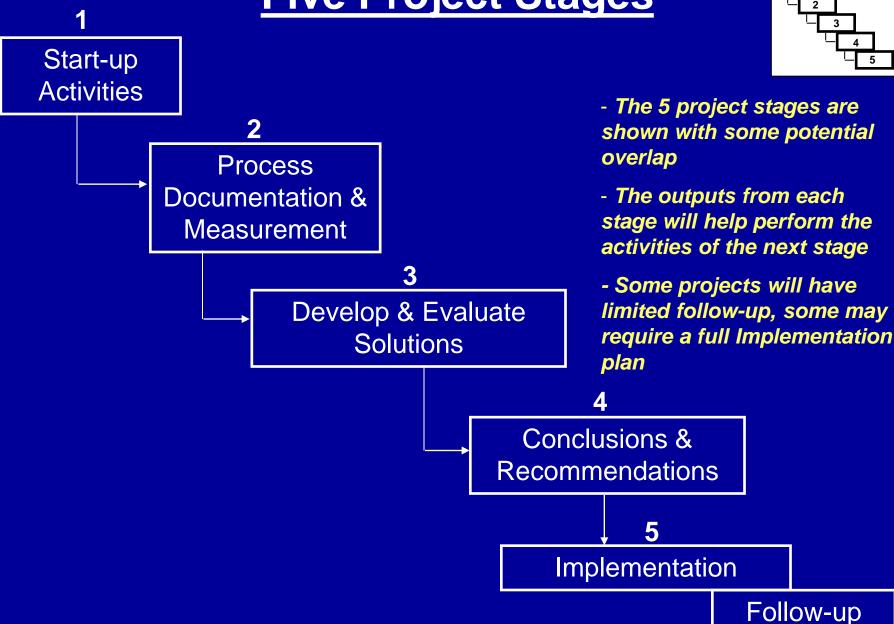
Tooling

- Machine Capacity
- Tool Usage
- Tool Certifications

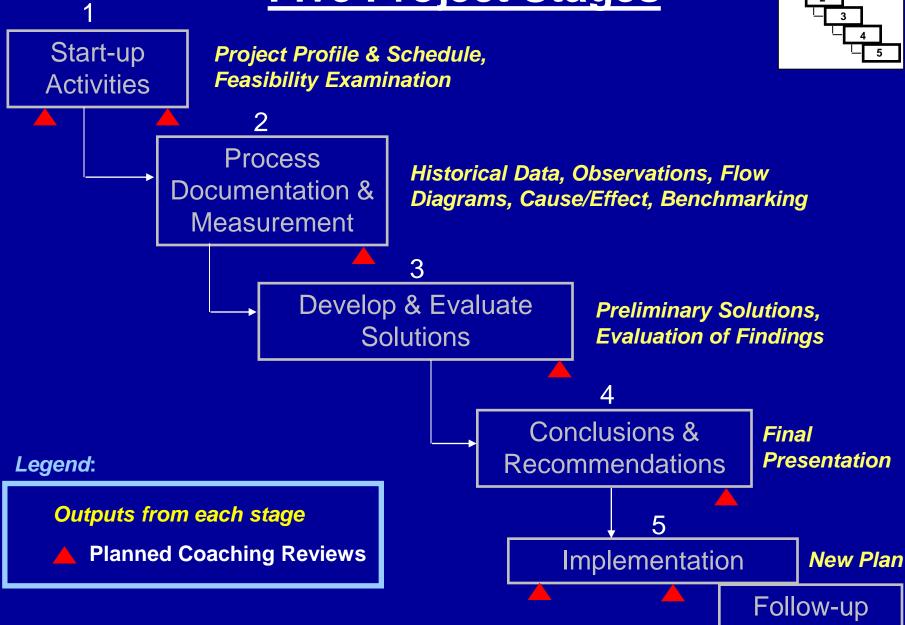
Transportation

- Logistics Planning
- Material Handling
- Alternative Methods

Training

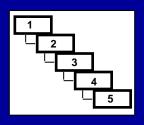


- Training Presentations
- Course Scheduling


IE Analysis Projects

- IE projects are primarily analysis type projects
 - For most new IEs these will be relatively small in scope and not include large teams
 - Later with more experience, these IE projects may become larger in scope and include larger teams
- This IE Projects activity is not to be confused with Program Managers and others with the title of Project Manager (New Product Developers, Design Engineers, etc.)

Five Project Stages


Five Project Stages

Project Coaching Reviews

- There are several opportunities for some Project Coaching Reviews, at each stage of a project
- Review status to the original Project Profile
 - Is it still valid? Has the scope changed?
- Review status to the project Schedule
- Encourage extensive project documentation
- Coach and advise the outputs for each project stage (rather than try to influence the projects' findings & conclusions)
- Team should print out copies of outputs to bring to the review session – but not prepare any new material
- Discuss next planned activities & any project concerns
- Review presentations prior to being shown to the project's customer (outline, format, & likely questions)

Five Project Stages

1. Project Start-up Activities

- Project is authorized and assigned
- Initial meetings with the project's customer
- Project Team is formed
- Initial understanding about project
- A feasibility study may be required before proceeding too far
- Project Profile is prepared & reviewed with the project's customer
- Project Schedule is prepared & reviewed with the project's customer

Project Profile

Project #: PE- 0410 Analyst: Steve Snelling

Assignment Title: 747 T.O.C./Critical Chain Pilot Area

Customers: Final Assembly General Supervisor

A/C Bay Supervisor

Date Assigned: $\frac{4/1/2004}{2004}$ ECD: $\frac{12/10/2004}{2004}$

Description:

To determine if a pilot area for T.O.C. (Critical Chain) is viable for an area in FBJ

systems. Then set up and run the pilot area for several airplanes.

Scope:

FBJ Air Conditioning Installation area (~110 jobs).

Expected Benefits:

Determine potential savings by using alternate scheduling methods.

Determine if feasible. If there are measurable savings by this approach.

Statement of Work:

Develop a project plan and schedule

Learn from F-22 usage and 777 S&I pilot area

Define the true Critical Chain (note: differs from the Critical Path, and also more detailed than current P-nets), including revised job times and buffers

Investigate software options

Get IE Resource Commitment

Prepare report on turning on the pilot

Decide to go or no-go

Start up the pilot area

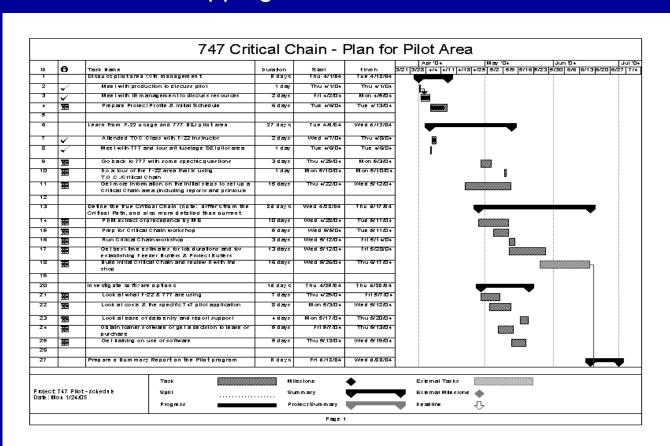
Deliverables:

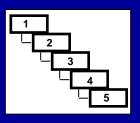
Detailed precedence networks

Calculated (or estimated Project Buffer and Feeder Buffers)

A detailed Critical Chain network that represents the entire pilot area (all skills) Sample management reports & tracking charts

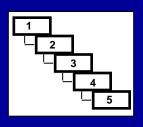
A recommendation to proceed or not to proceed with turning on the pilot

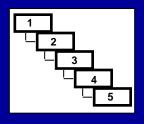

A recommendation after running the pilot, to expand or not to expand it to other systems areas in Final Assembly


Schedule: (see attached MS Project schedule)

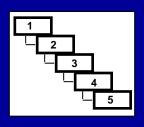
- Write a clear, concise project description/ objective
- Define a realistic project scope/ boundaries
- List the main planned deliverables
- Describe the main project steps (Statement of Work)

Project Schedule


- Use an outline approach to build the schedule
- Include the entire project & keep the schedule updated
- Break larger projects down into phases
- Keep the schedule as simple as possible
- Minimize overlapping tasks for small teams


2. Process Documentation & Measurement

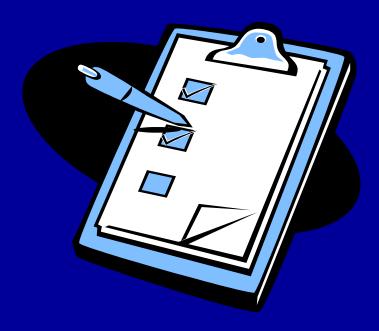
- Process flow charts are prepared, if applicable
- Historical data is obtained & analyzed
- New data is obtained & analyzed (e.g. Time Studies, direct observations)
- Direct observations of current conditions
- Digital pictures of current conditions
- Interviewing for Information
- Cause and effect diagrams, etc.
- Possible Benchmarking tours


3. Develop & Evaluate Solutions

- Solutions are listed and organized
- Additional benchmarking, if needed
- Simulations (mathematical or using simulation software) are performed, if applicable
- Evaluation criteria are determined and utilized
- All viable solutions are evaluated

4. Prepare Conclusions & Recommendations

- Conclusions are documented and investigated
- Final recommendations are documented
- Final presentations are prepared, reviewed & given


5. Implementation & Follow-up

- Implementation items are planned and assisted
- Follow-up is done as necessary
- A large scale implementation may become a new project

Summary Comments for this Section

- Utilize the five Project Stages on any IE project that is reasonably complex:
 - Taking more than 3 weeks to complete
 - Not a simple, quick analysis
- The Project Start-up stage is very important to a successful project
 - And is where projects can often run into trouble
- Plan to have specific documented outputs from each stage of a project
- Look for opportunities to do IE Analysis projects in a variety of functional areas
- Utilize some "Project Coaching" opportunities

Project Management Tips for IE Analysis Projects

Project Management Tips

Project Profile, Scope & Schedule

- Develop a good Project Profile & Scope as covered earlier
- Keep track of the Estimated Completion Date (ECD) - adjust to complete on time, if possible
- Any Scheduling software cannot take the place of logical steps and good task time estimates
- Software is just a tool that needs to be used wisely
- Ask for Resource help, as soon as the need is identified

Project Phases

- Consider breaking larger projects into several phases
- Work on project phases sequentially as smaller projects, if enough resources are available
- Break out portions of the project, if necessary, due to delays in the project customer's decision making
- Implementation and significant follow-up activity is commonly viewed as a separate phase of the project

Getting Help

- Look for ways of partnering with other individuals or groups on projects
- Your Research & Development group may have some experts on call & may be able to purchase some inexpensive items for testing
- Other groups of "Subject Experts" bring additional needed expertise
 - (e.g. Tool Engineering, Quality Engineering, Design Engineering, etc.)
- Most IE projects are collaborative
 - How well you coordinate with other groups is critical to a project's success

Project Communication

- Use a variety of medium to communicate with your Team
 - (meetings, e-mail, digital pictures, file servers, white board discussions, WebEx, etc.)
- Ask for reviews during the project
 - Don't wait for everyone to chase you down to find out how it is going
- Regularly communicate with your project's customer
 - The more frequent the less "forced" the final presentation will seem
- A positive & team-focused "Attitude" is critical to today's project communications
 - A "bad attitude" is rarely tolerated for long

Data Analysis & Measurement

- Understand what data is needed, then develop your collection plan
 - (both historical & new data)
- Use data to verify and help investigate findings
- Utilize good statistical analysis skills, and check all calculations
- Link data to actual observations, when possible
- Set up lab tests and mathematical models
- Constantly do "reality checks" with your subject experts

Benchmarking

- Do the main benchmarking only after you fully understand your current process
 - If done too early, you are not ready
 - If done too late, the benchmarking can't properly influence the solution development
- Utilize "white board" discussions (that are later typed up) to reach consensus with your Team
- Try to include your project's customer on some of the benchmarking tours

Solutions & Evaluations

- Write down alternative solutions throughout the project
 - Plan to research and investigate them
- Be creative and comprehensive when developing initial solutions ideas
- Develop an evaluation approach
 - (The criteria you want to use to determine which solutions are best)
- Rank the most likely solutions
 - (The ranking may be based on cost, schedule, or risk factors)
- Bring the project's customer in on the selection process and to offer real applications information
 - (A "reality check")

Conclusions & Recommendations

- Research & investigate the most likely conclusions with the entire Team
- Review the possible conclusions ongoing with your project's customer
- Take the best of the ideas and form a logical recommendation
- Assess the Recommendations by cost & risk when presented
- Time phase the recommendations, if needed

Presentations & Reports

- Review all final presentations (and final reports) prior to being given to the project's customer
- Make sure all files (hard copies & electronic) are organized and stored properly at the conclusion of the assignment

Some Project Dangers

Some Project Dangers

- Vague commitment from customer
- Poor project description Undefined or unclear objective
- Unrealistic scope
- Unrealistic deliverables
- Poorly defined tasks
- Too tight a schedule
- Multiple customers not in agreement
- No safety margin for late tasks
- Key team members busy with other projects

- Poor communication with customer
- Poor data storage & sharing of files
- Late outside data sources
- Sub standard quality of data being used
- Bad team dynamics
- Non action-oriented report (or final presentation)
- Overlap with other project teams
- Legal issues

Lessons Learned to Avoid Project Dangers

Lessons Learned to Avoid Project Dangers

- Seek the highest level customer
- Develop a realistic scope
- Form a strong, versatile, optimistic team
- Develop a Project description, approach, schedule, & required resources
- Build recovery time into the schedule for contingencies
- Review plan with customer for concurrence
- Provide on-going status to customer
- Manage scope changes & customer expectations
- Reassess approach & schedule periodically
- Use good daily & time management techniques

Lessons Learned (continued)

- Check findings against actual applications
- Recheck results to see if objectives were met
- Provide ground rules of all assumptions used
- Provide explanation to support observations
- Check and verify all calculations and tables
- Review conclusions with entire team
- Use a good format for final report & presentation
- Provide an implementation plan (if required)

Some Summary Comments from this Section

- Recognize when to use Project Management techniques on your IE assignments
- Form a good Team, with the needed Subject Experts
- Develop a good Plan, then work your Plan to a successful conclusion, with your Team
- Utilize good daily management and time management techniques
- Monitor progress (overall & to the assigned tasks) and make adjustments as required
- Keep your customer & your Team informed throughout the project
- Learn from your own project management experiences (both the good and the bad)